Chapter 1: The GWEH®""

Bell

r 2 1 . C[{b B.ar-]‘.‘w ; ! . rat)
s "IWLM : ’){']']]] s Htmuhlm}" in 1979, while he was working I'lﬂgl.lc’ig(.
Laboratories I 1 ’_NL'W]L‘I'svy- Slmustrllh initially called the new ik Is
«C with Classes.” However, in 1983, ylye xtends
by adding object-oriented features, Bee
i includes all of C’s features, attributes
success of C++ as a language. The inve
completely new programming |
highly successful one.

name wag changed to C++. C++ € A1
AUSe C44 is built upon the foundation ¢ i
»and benefits, This is a crucial reason for

ntion of C+4 was not an attempt to cre
anguage. Instead, it was an enhancement to an

ate a
already

The Stage Is Set for Java

By the end of the 1980s and the early 1990, object-oriented programming using C++
took hold. Indeed, for a brief moment it seemed as if programmers had finally fou nd
the perfect language. Because C++ blended the high efficiency and stylistic elements of
C with the object-oriented paradigm, it was g language that could be used to create a
wide range of programs. However, just as in the past, forces were brewing that would,
once again, drive computer language evolution forward. Within a few years, the World

Wide Web and the Internet would reach critical mass. This event would precipitate
another revolution in programming.

: . " AR O i B
1 i S S S P S S A R WS

" | The Creation of Java

Java was conceived by James Gosling, Patrick Naughton, Chris Warth, Ed Frank, and
Mike Sheridan at Sun Microsystems, Inc. in 1991. It took 18 months to develop the first
working version. This language was initially called “Oak” but was renamed “Java”
in 1995. Between the initial implementation of Oak in the fall of 1992 and the public
announcement of Java in the spring of 1995, many more people contributed to the design
and evolution of the language. Bill Joy, Arthur van Hoff, Jonathan Payne, Frank Yellin,
and Tim Lindholm were key contributors to the maturing of the original prototype.
Somewhat surprisingly, the original impetus for Java was not the Internet! Instead,
the primary motivation was the need for a platform-independent (that is, architecture-
neutral) language that could be used to create software to be embedded in various
consumer electronic devices, such as microwave ovens and remote controls. As you
can probably guess, many different types of CPUs are used as controllers. The trouble
with C and C++ (and most other languages) is that they are designed to be compiled
for a specific target. Although it is possible to compile a C++ program for just about
any type of CPU, to do so requires a full C++ compiler targeted for that CPU. The
problem is that compilers are expensive and time-consuming to create. An easier—
and more cost-efficient—solution was needed. In an attempt to find such a solution,
Cosling and others began work on a portable, platform-independent language th
could be used to produce code that would run on a variety of CPUs under differ;
€nvironments. This effort ultimately led to the creation of Java.

at

ng

Scanned with CamScanner

Java™ 2: The Complete Reference

a second, and

About the time that the details of Java were being worked out,
' al role

ant, factor was emerging that would play a cruci
in the future of Java. This second force was, of course, the World Wide Web. Had
the Web not taken shape at about the same time that Java was being implemented,
Java might have remained a useful but obscure language for programming consumer
electronics. However, with the emergence of the World Wide Web, Java was propelled
to the forefront of computer language design, because the Web, too, demanded

ultimately more import

portable programs.
Most programmers Jearn early in their careers that portable programs are as
a way to create efficient, portable

clusive as they are desirable. While the quest for |
as the discipline of programming

(platform-independent) programs is nearly as old di
itself, it had taken a back seat to other, more pressing problems. Further, because much

of the computer world had divided itself into the three competing camps of Inte'l,
Macintosh, and UNIX, most programmers stayed within their fortified boundaries,
and the urgent need for portable code was reduced. However, with the advent of the

Internet and the Web, the old problem of portability returned with a vengeance. After
all, the Internet consists of a diverse, distributed universe populated with many types
and CPUs. Even though many types of platforms

of computers, operating systems,
o be able to run the same

are attached to the Internet, users would like them all t
ogram. What was once an irritating but low-priority problem had become a

pr
high-profile necessity.
By 1993, it became obvious to members of the Java design team that the problems
d when creating code for embedded controllers

of portability frequently encountere
te code for the Internet. In fact, the same problem

are also found when attempting to crea
1 scale could also be applied to the

that Java was initially designed to solve on a smal
Internet on a large scale. This realization caused the focus of Java to switch from

consumer electronics to Internet programming. So, while the desire for an architecture-
neutral programming language provided the initial spark, the Internet ultimately led to

Java's large-scale success.
As mentioned earlier, Java derives much of its character from C and C++. This is

by intent. The Java designers knew that using the familiar syntax of C and echoing

the object-oriented features of C++ would make their language appealing to the

legions of experienced C/C++ programmers. In addition to the surface similarities,

Java shares some of the other attributes that helped make C and C++ successful. First,

Java was d.esigned, tested, and refined by real, working programmers. It is a language

grounded in tlr:e needs and experiences of the people who devised it. Thus, Java is also

zxfzzogtrfamiger S language. S.econd, Java is cohesive and logically consistent. Third,.

proglza n?;er??sl?iﬂit::ci?tﬁf ugﬁosed by the Internet environment,]ant gives you, the

i i re.ﬂegc thaptr(t)gram we!l, your programs reflect it. If you program
, too. Put differently, Java is not a language with

s .
raining wheels, It is a language for professional programmers.

Scanned with CamScanner

Chapter 1: The Genesis of Java S8

Because of the similarities between lava
" » B]t 3 g i ¥
simply the “Internet version of C+4.,” ”m\: and C++, it is tempting to think of Java as
sl YT aetinal ; ‘ : ever, to y I ava
has &lg11li;Li1l1lé\l(lLl-IlL:ﬂl and philosophical di”v'mni(: S\(x;/;\,"lm!:l'htt a larf(- mlatakc.qL
. ‘Nee ’ S ; wle 1t 18 > that Java wa¢t
lnﬂllt“;;‘ " 1++',1 is n{ut an enhanced versjon 51 Crte, oo & n;‘“ el J.“ : "ther
i : nmt ; mx{:?;_nn ly compatible with C++,0f oy o lt;‘ﬂm}’ (l Ja':'a “ l‘lt]l C++
are signi icant, and 1)r('n'l are a C++ pr . rse, the similarities wi 1
< : rogrammer, tl s : i
) e : : . , then you will feel right : » with
Java. One ‘;”_‘U' le‘;l-]ﬂl\)’i'\ Was not designed tq ruphcs_}(’2++ Java W’]qu:ts’;t : Ogln :0
-olve a certain set of pro . Hew - Java was designe
poive h cetraa F ems. C++ was designed to solve a different set fg blems
Both will coexist for many years to come e
As mentioned at the start of thi . '
s chapter, co
_ . ; » computer languages evolve for two
reasons: to adapt to changes in environment and to impler?mntg advances in the art
of programming. The environmental change that prompted Java was the need for
platform-independent programs destined for distributi .
aal S el _ r distribution on the Internet. However,
Java also em changes in the way that peopl RN ;
Specifically, Java enhan dr e people approach the writing of programs.
PECLICATYs ces and refines the object-oriented paradigm used by C++.

Thus, Java is not a language that exists in isolation. Rather, it is part of an ongoing .-

process begun many years ago. This fact alone is enough to ensure Java a place in
computer 1f1nguage hlSt‘?rY- Java is to Internet programming what C was to systems
programming: a revolutionary force that changed the world.

The C# Connection

The reach and power of Java continues to be felt in the world of computer language
development. Many of its innovative features, constructs, and concepts have become
part of the baseline for any new language. The success of Java is simply too important
to ignore.

Perhaps the most important example of Java’s influence is C#. Recently created by
Microsoft to support the NET Framework, Ci# is closely related to Java. For example,
both share the same general C++-style syntax, support distributed programming, and
utilize the same object model. There are, of course, differences between Java and C#,
but the overall “look and feel” of these languages is very similar. This “cross-pollination”
from Java to C# is the strongest testimonial to date that Java redefined the way we

think about and use a computer language.

= s

A R e R B R T AR T R

A e B N R R

Why Java Is Important to the Intemet

The Internet helped catapult Java to the forefront of programming, and Java, in turn,
has had a profound effect on the Internet. The reason for this is quite simple: Java
expands the universe of objects that can move a.bout freely in cyberspace. In a network,
two very broad categories of objects are transmitted .betwe:.'en the server ;ﬂd your s
personal computer: passive information and dynamic, active programs. For examp!e,

Scanned with CamScanner

¥

@javam 2: The Complete Reference

when you read your e-mail, you are viewing passive data, Even when you download a
program, the program’s code is still only passive data until you execute it. However, 4
second ty;zc of object can be transmitted to your computer: a dynamic, sel f-exccutinét
program. 'DE]Ch a program is an active agent on the client com puter, yet is initiated by
the server. For example, a program might be provided by the server to display properl
the data that the server is sending, ’

As des.irable as dynamic, networked programs are, they also present serious
problems in the areas of security and portability. Prior to Java, cyberspace was
effectively closed to half the entities that now live there, As you will see, Java addresses
those concerns and, by doing so, has opened the door to an exciting new form of
program: the applet.

Java Applets and Applications

Gava. can be used to create two types of pro rams: applications and applets. An
application is a program that runs on your compu der the operating system of that

‘computer. That is, an application created by Java is more or less like one created using C

pr C++. When used to create applications, Java is not much different from any other
computer language. Rather, it is Java’s ability to create applets that makes it important.

An applet is an application designed to be transmitted over the Internet and executed by =
a Java-compatible Web browser. An a pplet is actually a tiny Java program, dynamically

downloaded across the network, just like an file, or video clip. The
important difference is that an applet is an intelligent program, not just an animation or
1 attaVae 1) ale 3. Treq) OF-31

media file. In other words, an apple Prog at-can react to-user-i
dynamically change—not just run the same animation or sound over and ov
As exciting as applets are, they would be nothing more than wishful thinking if

Java were not able to address the two fundamental problems associated with them:
secutity and portability. Before continuing, let’s define what these two terms mean

relative to the Internet.

Security
As you are likely aware, every time that you download a “normal” program, you
are risking a viral infection. Prior to Java, most users did not download executablt?
programs frequently, and those who did scanned them for virgses pr'for to execution.
Even so, most users still worried about the possibility of infecting their systems with
a virus. In addition to viruses, another type of malicious program exists that must bg
guarded against. This type of program can gather private informgtion, such as credit
card numbers, bank account balances, and passwords, by searching the contents :af
your computer’s local file system. Java answers both of these concerns by providing

a “firewall” between a networked application and your computer. _
When you use a]avamo%fmmwm%:acmn
pplets without fear of viral W%t
mﬁa program to the Java execw
.c"\ o

Scanned with CamScanner

— T

a
Chapter 1: The Genesis of JaV% [

access to other parts of the computer. (You wijy e
“Fhe ability to download applets witly ;
1o security will be breached is consid

Yspect of Java.
e] .

how this is accomplished shortly.)
confidence that arm will be done and that

erec by many to be the single most imporign

portability

As discussed earlier, many types of computers and operating systems are in use

throughout the world—and many are connected to the Internet. For programs to
be dynamically downloaded to al] the various ¢ es of platforms connected to the

“Internet, some me enerating portable execut
soon see, the same mechanis

i m that helps ensure ge
Indeed, Java’'s solution to these two problems is bo

able code is needed. As you will
curity also helps create portability.
th elegant and efficient.

O o, Mg
i B L R —— R T S G L 5 1

|Java’s Magic: The Bytecode
The key that allows Java to solve both the sec
Jescribed is that the output of a Java compile

Dytecode. Bytecoc?e is a highly optimized set of instructions designed to be executed
by the Java run-time system, which is calleq the Java Virtual Machine (JVM). That is, .
in its standard form, the 1S an interpreter for bytecodeyThis may come as a bit of

m1ed to executable code. In fact, most modern

languages are designed to be compiled, not interpreted—mostly because of
performance concerns. However, the fact that a Java program is executed by the
JVM helps solve the major problems associated with downloading programs over
the Internet. Here is why.

Translating a Java program into bytecode helps makes it much easier to run a]_e/
mﬁgm_in.ajﬂde variety of environments.jThe reason is straightforward: only the

IVM needs to be implemented for each platform. Once the run-time package exists
wymany [ava program can run on it. Remember, although the details

of the JVM will differ from platform to platform, all interpret the same Java bytecode.
Ifa Java program were compiled to native'code, then different versions of the same
program would have to exist for each type of CPU connected to the Internet. This is,
of course, not a feasible solution. Thus, the interpretation of bytecode is the easiest way
to create truly portable programs.
M@Jm&p@ﬁm is interpreted also helps to make it secure. Because the
Sxecution of every Java program is unde1_' the Fontrol of the]}/M, the JVM can contain
E-}-.l.e_Bl‘ogI‘z:lm and prevent it from generating side effects outmfie .Of the system. As you
will see, safety is also enhanced by certain restrictions that exist In the Java language.
en a program is interpreted, it generally runs by Slo‘.Ner b
Iun if compiled to executable code. However, with Java, the d}fferentlal between the
0is not so great. The use of bytecode enables the Java run-time system to execute _

Wh faster than you might expect.

urity and the portability problems Jjust
r is not executable code. Rather, it is

Scanned with CamScanner

glava“" 9: The Complete Reference

a was designed for interpretation, there is technically nothing about

y compilation of bytecode into native code. Along these - »
(JIT) compiler for bytecode, which is included in

ris part of the JVM, it compiles bytecode into *
and basis. It is important to

Although Jav
Java that prevents on-the-fl)
lines, Sun supplies its Just In Tl‘me :
the Java 2 release. When the JIT compile '
executable code in real time, on a piece-by-piece, dem .
understand that it is not possible to compile an entire Java program into executable

code all at once, because Java performs various run-time checl::s that can be done only |
at run time. Instead, the JIT compiles code as it is needed, during execution. However, |
the just-in-time approach still yields a significant performance boost. Even whep |
dynamic compilation is applied to bytecode, the portability and safety fe.&'lt}ll'(".'s still
apply, because the run-time system (which performs the compilation) still is in charge
of the execution environment. Whether your Java program is actually interpreted in the
traditional way or compiled on-the-fly, its functionality is the same.

T e T

e e iyt

The Java Buzzwords

No discussion of the genesis of Java is complete without a look at the Java buzzwords.
Although the fundamental forces that necessitated the invention of Java are portability .
and security, other factors also played an important role in molding the final form of & . |
the language. The key considerations were summed up by the Java team in the
following list of buzzwords:

B Simple |
B Secure :

B Portable
B Object-oriented |
B Robust . z i
B Multithreaded - & £
B Archite~ture-neutral e !
B Interpreted }
B High perfcrmance ‘
B Distributed |
B Dynamic
Two IO-f‘,.t};l@Sé‘bélZlZWQfds'h_avé'_lalféady been discussed: secure and portable. Let's
examine what each of the others implies.

Scanned with CamScanner

Chapter 1: The Genesis

simple
Java was designed to be easy for the profe
-I——--—"'_"-'-_-—__ .
cttectively. Assuming that you have some
MM master. _lf you i\ll‘l.“:]d\f understand the basic concepts of “b]‘JCt"’ric_n.t.cd
l_ﬁn‘lgl'ﬂl]““lllg, It‘ﬂl'l'ﬂng]a\'u \Vl“ bQ cven l‘ﬂSiC[‘ BL“%{ (lf a” if YOU are an gxperlcncc
N L !

C++ programmer, moving to Java will require very little effort. Because Java inherits
the C/C++ syntax and many of the object-orie

ey
. : nted features of C-++, most programme .
"have Nittle trouble learning Java. Also, some o the more confusing concepts from C++
are either left out of Java or implemented in 4 cleaner, more approachable manner.

Beyond its similarities with C/C++, Java has another attribute that makes it easy

to learn: it makes an effort not to have surprising features. In Java, there are a small
number of clearly defined ways to accomplish a given task.

= " S¢C

. : f
ropramming experience, YOQ_MH_Q?L—---

.4

Object-Oriented

Although influenced by its predecessors, Java was not designed to be source-code 4

compatible with any other language. This allowed the Java team the freedom to design ¢
with a blank slate. One outcome of this was a clean, usable, pragmatic approach to

objects. Borrowing liberally from many seminal object-software environments of the
last few decades, Java manages to strike a balance between the purist’s “everything is
an object” paradigm and the pragmatist’s “stay out of my way” model. The object

model in Java is simple and easy to extend, while simple types, such as integers, are
kept as high-performance nonobjects.

Robust | .

The multiplatformed environment of the Web places extraordinary demands on a
program,'becé.use the program must execute reliably in a variety of systems. Thus, the
ability to create robust programs was given a high priority in the design of Java. To
@reliability, Java restricts you in a few key areas, to force you to tind your mistakes
early in program development. At the same time, Java frees you from having to worry™ ~
about many of the most common causes of programming errors. Because Java is a
stritlly typed language, it checks your code at compile time. However, it also checks
wode at run time. In fact, ma ny hard-to-track-down bugs that often turn up in
hard-t6-reproduce run-time situations are simply impossible to create in Java.
Knowing that what you have written will behave in a predictable way under diverse
conditions is a key feature of Java.

To better understand how Java is robust, consider two of the main reasons for
Program failure: memory management mistakes and mishandled exceptional
conditions (t}m, run-time errors). Memory management can be a difficglpt, tedious

=
]

Scanned with CamScanner

.;Elaua““ 2: The Complete Reference

task in traditional programming environments, For example, in C /C++, the
programmer must manually allocate and free all dynamic memory- This sometimes
leads to problems, because programmers will either forget to free memory that has
been previously allocated or, worse, try to free some memory that another part of

their code is still using. Java virtually eliminates these problems by managing memory
allocation and deallocation for you. ' oy e
because Java provides garbage collectiwmnbicﬂs.) Exceptional corld'xhons in
Taditional environments often arise i-situat Lo

Yound,” and they must be managed with clumsy and hard-to-re_ad constgﬁé_»li‘tfta
helps in this area by providing object- i xception handling. In a well-written
Java program, all run-time errors can—and should—be managed by your program.

Multithreaded

Java was designed to meet the real-world requirement of ¢

network ograms.To accomplish this, Java suppijmgl‘mﬂing,
whi to write programs that do many things simultaneously. The Java
un-time system comes with an elegant yet sophisticated solution Tor multiprocess
synchronization that enables you to construct smoothly running interactive systems.
Java's easy-to-use approach to multithreading allows you to think about the specific

behavior of your program, not the multitasking subsystem.

reating interactive,

Architecture-Neutral

A central issue for the Java designers was that of code longevity and portability. One
Mﬂﬁﬁ%ﬁmmmmﬂwﬁw
a program today, it will run tomorrow—even on the same mac_h_'lr_le. Operating system
upgrades, processor upwm&www ine
“To make a program 1 malfunction. T he Java designers made several hard decisions in the

| Java language and the Java Virtual Machine in an attempt to alter this-situation. Their
'{ MMMme, forever.” To a great extent, this goal
was accomplished..
 Interpreted and High Performance i Zassim st
&

As described earlier, Java enables the creation of cross-platform programs by compiling
into an intermediate representation called Java bytecode. This code can be interpreted
on any system that provides a Java Virtual Machine. Most previous attempts at cross-
platform solutions have done so at the expense of performance. Other interpreted
systems, such as BASIC, Tc], and PERL, suffer from almost insurmountable performance
deficits. Java, however, was designed to perform well onvery low-power CPUs. As
explained earlier, while it is true that Java was engineered-forinterpretation;-the Java |
bytecode was carefully designed so that it would be easy to translate directly into native
machine code for very high performance by using a just-in-time compiler. Java run-time
systems that provide this feature lose none of the benefits of the platform-independent
code. “High-performance cross-platform” is no longer an oxymoron.

A}

R

" Scanned with CamScanner

.-3 o N S N =

o
‘ ava (=
Chapter 1: The Genesis MRLAE

pistributed

Java is designed for the distributed environment of the Internet, because it hand les L
TCP/IP protocols. In fact, accessing a resource using a URL is not much different e o
from accessing a file. The original version of Java (Oak) included features for intra-
address-space messaging. This allowed objects on two different computers to execute
procedures remotely. Java revived these interfaces in a package called Remote Method

Invocation (RMI). This feature brings an unparalleled level of abstraction to client/
server programming.

Dynamic

Java programs carry with them substantial amounts of run-time type information that
is used to verify and resolve accesses to objects at run time. This makes it possible to
dynamically link code in a safe and expedient manner. This is crucial to the robustness

of the applet environment, in which small fragments of bytecode may be dynamically
updated on a running system.

i b

T R R SR T R I T R R BT U N ST r R e

I The Continuing Revolution

The initial release of Java was nothing short of revolutionary, but it did not mark the

end of Java’s era of rapid innovation. Unlike most other software systems that usually

settle into a pattern of small, incremental improvements, Java continued to evolve at

an explosive pace. Soon after the release of Java 1.0, the designers of Java had already
created Java 1.1. The features added by Java 1.1 were more significant and substantial

than the increase in the minor revision number would have you think. Java 1.1 added

many new library elements, redefined the way events are handled by applets, and
reconfigured many features of the 1.0 library. It also deprecated (rendered obsolete)

several features originally defined by Java 1.0. Thus, Java 1.1 both added and =
subtracted attributes from its original specification. P

The next major release of Java was Java 2. Java 2 was a watershed event, markin
the beginning of the “modern age” of this rapidly evolving language! The first release
of Java 2 carried the version number 1.2, It may seem odd that the first release of Java 2
used the 1.2 version number. The reason is that it originally referred to the version of
the Java libraries, but it was generalized to refer to the entire release, itself, Java 2
added support for a number of new features, such as Swing and the Collections
framework, and it enhanced the Java Virtual Machine and various pProgramming tools.

Java 2 also contained a few deprecations. The most important affected the Thread cl
in which the methods suspend(), resume(), and stop() were deprecated.

The next release of Java was Java 2, version 1.3. This version of Java was the first
major upgrade to the original Java 2 release. For the most part it added to existing
functionality and “tightened up” the development environment. In general, programs
Written for version 1.2 and those written for version 1.3 are source-code compatible-
Although version 1.3 contained a smaller set of changes than the preceding three major
releases, it was nevertheless important. -

ass

Scanned with CamScanner |

